Problem Solving Framework

Define the Problem

- · What is the problem about?
- · What is the problem asking you to do?

What do you know from the problem that can help you solve the problem?

Analyze the Problem

Problem Solving Framework

- Read the problem.
- Identify the role you will play in the problem.
- Identify clue words to determine what operations need to be performed.

Read the Problem

 What strategies might you use to solve the problem? **Brainstorming Strategies for Solving the Problem**

 How will you start the problem?

Performance Task Rubric

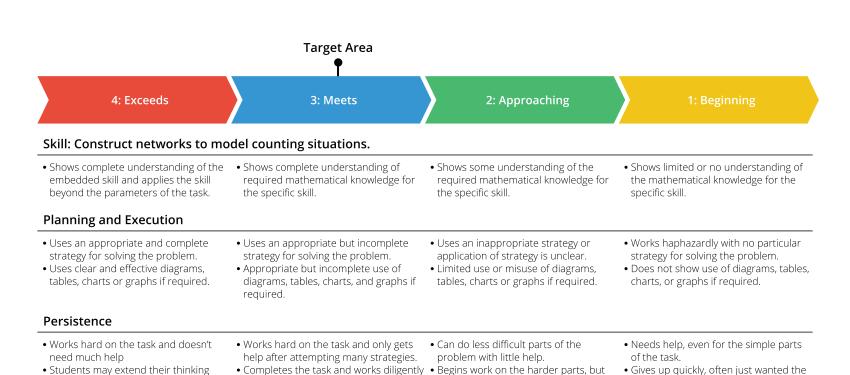
Skill: Compare and contrast permutations and combinations.

- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of required mathematical knowledge for the specific skill.
- Shows some understanding of the required mathematical knowledge for the specific skill.
- Shows limited or no understanding of the mathematical knowledge for the specific skill.

Skill: Construct vertex-edge graphs to describe a counting situation.

- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of required mathematical knowledge for the specific skill.
- Shows some understanding of the required mathematical knowledge for the specific skill.
 - Shows limited or no understanding of the mathematical knowledge for the specific skill.

Skill: Calculate the total permutations or combinations of (n) objects over time.


- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of required mathematical knowledge for the specific skill.
- Shows some understanding of the required mathematical knowledge for the specific skill.
- Shows limited or no understanding of the mathematical knowledge for the specific skill.

Skill: Apply the Fundamental Counting Principle.

- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of required mathematical knowledge for the specific skill.
- Shows some understanding of the required mathematical knowledge for the specific skill.
- Shows limited or no understanding of the mathematical knowledge for the specific skill.

Performance Task Rubric

unless help is provided gives up.

beyond the problem and make new

connections or make new problems.

at the harder parts.

answer giving.

Performance Task Rubric

Communication:

- There are clear effective explanations There is clear explanation for the solutions when prompted to explain or describe.
- Mathematical representations are actively used as means of communicating ideas.
- There is precise and appropriate mathematical terminology used.
- There is appropriate use of accurate mathematical representation.
- There is effective use of mathematical There is some use of appropriate terminology.
- There are incomplete explanations.
- There is some use of appropriate mathematical representations.
 - mathematical terminology.
- There are no explanations for the solutions. The explanations cannot be understood or is unrelated to the
- There is no use or inappropriate use of mathematical representations.
- There is no use or mostly inappropriate use of mathematical terminology.

Critical Thinking/ Creative Thinking Rubric

Target Area 4: Exceeds 3: Meets 2: Approaching 1: Beginning Ideation/Brainstorming:

- The learner frequently sees the links between unrelated ideas. The learner is able to produce well-developed results that are fresh and new with no support.
- The learner often produces new and unique ideas with little or no support.
- The learner occasionally produces new and unique ideas but only with guidance.
- The learner is unable to produce new and unique ideas without significant guidance and encouragement.

Realization

- The learner actively seeks out and follows through with new ideas or approaches to a problem. The risk of failure is a real possibility but does not constrain the learner.
- The learner is willing to consider and follow through on ideas or approaches to a problem. The risk of failure is a possibility and puts some constraint on the learner.
- The learner considers new ideas or approaches to a problem only with strong encouragement. The risk of failure constrains the learner.
- The learner will not consider new ideas. The learner strictly stays within the constraints of the problem, which ensures that there is little risk of failure.

Communication

- The learner identifies the main idea of the problem with numerous supporting details and examples, which are organized logically and coherently within the Problem Solving Framework with no assistance.
- The learner identifies the main idea of the problem with some supporting details and examples in an organized manner within the Problem Solving Framework with little assistance.
- The learner identifies the main idea of the problem with few details or examples in a somewhat organized manner within the Problem Solving Framework with assistance.
- The learner is unable to identify the key elements of the problem without a great deal of assistance.

Critical Thinking/ Creative Thinking Rubric

Target Area

4: Exceeds

3: Meets

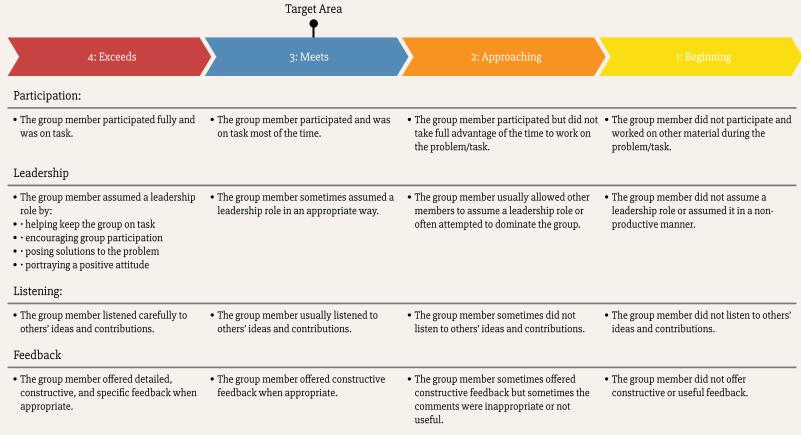
2: Approaching

1: Beginning

Process:

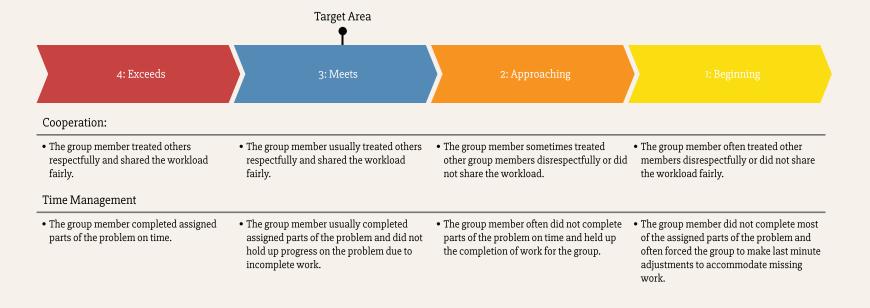
- The learner develops strategies that are insightful and uses logical reasoning to reach accurate results with no assistance.
- The learner develops strategies that are insightful and uses logical reasoning to reach accurate results with little assistance.
- The learner develops strategies that are insightful and uses logical reasoning to reach accurate results with assistance.
- The learner is unable to develop strategies that are insightful and logical without a great deal of assistance.

Iustification

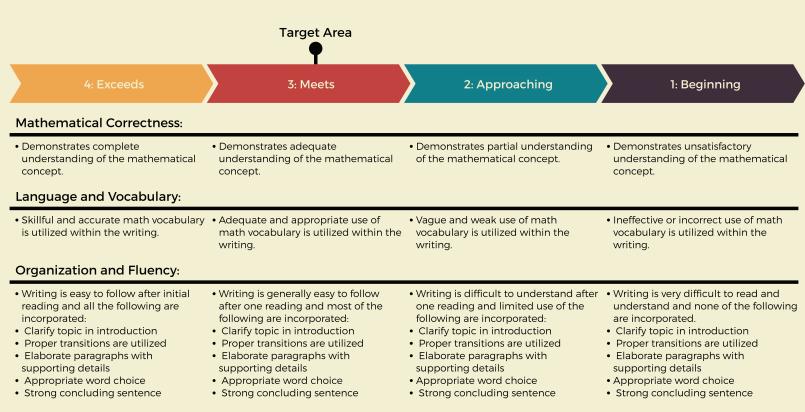

- The learner clearly justifies the choices The learner justifies the choices made made for solving the problem.
- The learner can clearly explain new understandings gained from the problem.
- for solving the problem.
- The learner can explain new understandings gained from the problem.
- The learner attempts to justify the choices made for solving the problem.
- The learner can explain some things learned in the problem but are not entirely clear about new understandings.
- The learner shows limited attempts to justify the choices made for solving the problem.
- The learner struggles to explain important new understandings gained from the problem.

Reflection

- The learner clearly identifies strengths and weaknesses in their thinking.
- The learner clearly identifies improvements that would be made to solve the problem.
- The learner identifies strengths and weaknesses in their thinking.
- The learner identifies improvements that would be made to solve the problem.
- The learner attempts to identify strengths and weaknesses in their thinking.
- The learner attempts to demonstrate the improvements that would be made to solve the problem.
- The learner shows little attempt to identify strengths and weaknesses in their thinking.
- The learner shows little attempt to identify the improvements that would be made to solve the problem.



Collaboration Rubric



Collaboration Rubric

Writing in Math Rubric

Explanation

- Writing clearly translates computational strategies into written language with very limited use of numerals with no errors.
- Writing translates computational strategies into written language with some use of numerals with few errors.
- Writing translates some computational strategies into written language with the use of numerals and few errors.
- Writing translates some computational strategies into written language with the use of numerals and few errors.