Transmutant Flobots

Problem Solving Framework

Transmutant Flobots

Performance Task Rubric

Skill: Plot coordinates on a four quadrant grid.

- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of
required mathematical knowledge for the specific skill.
- Shows some understanding of the required mathematical knowledge for the specific skill.
- Shows limited or no understanding of the mathematical knowledge for the specific skill.

Skill: Reflect, translate, and rotate to produce congruent geometric objects.

- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of required mathematical knowledge for required mathematical knowledge for the specific skill.
- Shows some understanding of the the specific skill.
- Shows limited or no understanding of the mathematical knowledge for the specific skill.

Skill: Calculate problems involving percent of a number.

[^0][^1]- Shows limited or no understanding of the mathematical knowledge for the specific skill.

Skill: Dilate images after performed transformations (prime, double-prime, etc.)

- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of required mathematical knowledge for the specific skill.
- Shows some understanding of the required mathematical knowledge for the specific skill.
- Shows limited or no understanding of
the mathematical knowledge for the specific skill.

Transmutant Flobots

Performance Task Rubric

Skill: Dilate to produce similar geometric objects.

- Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.
- Shows complete understanding of required mathematical knowledge for the specific skill.
- Shows some understanding of the required mathematical knowledge for the specific skill.
- Shows limited or no understanding of the mathematical knowledge for the specific skill.

Planning and Execution

- Uses an appropriate and complete
strategy for solving the problem.
- Uses clear and effective diagrams, tables, charts or graphs if required.
- Uses an appropriate but incomplete strategy for solving the problem.
- Appropriate but incomplete use of diagrams, tables, charts, and graphs if required.

Uses an inappropriate strategy or application of strategy is unclear.

- Limited use or misuse of diagrams tables, charts or graphs if required
- Works haphazardly with no particular strategy for solving the problem
- Does not show use of diagrams, tables, charts, or graphs if required

Persistence

- Works hard on the task and doesn't need much help
- Students may extend their thinking beyond the problem and make new connections or make new problems
- Works hard on the task and only gets help after attempting many strategies
- Completes the task and works diligently at the harder parts.
- Can do less difficult parts of the problem with little help.
- Begins work on the harder parts, but unless help is provided gives up.
- Needs help, even for the simple parts of the task.
- Gives up quickly, often just wanted the answer giving

Transmutant Flobots

Performance Task Rubric

- There are clear effective explanations •There is clear explanation for the solutions when prompted to explain or describe.
- Mathematical representations are actively used as means of communicating ideas.
- There is precise and appropriate mathematical terminology used.
- There is appropriate use of accurate mathematical representation.
- There is effective use of mathematical terminology.
- There are incomplete explanations - There is some use of appropriate mathematical representations.
- There is some use of appropriate mathematical terminology.
- There are no explanations for the solutions. The explanations cannot be understood or is unrelated to the task.
- There is no use or inappropriate use of mathematical representations.
- There is no use or mostly inappropriate use of mathematical terminology.

Transmutant Flobots

Critical Thinking/ Creative Thinking Rubric

Target Area			
4 4: Exceeds	3: Meets	2: Approaching	1: Beginning
Ideation/Brainstorming:			
- The learner frequently sees the links between unrelated ideas. The learner is able to produce well-developed results that are fresh and new with no support.	- The learner often produces new and unique ideas with little or no support.	- The learner occasionally produces new and unique ideas but only with guidance.	- The learner is unable to produce new and unique ideas without significant guidance and encouragement.
Realization			
- The learner actively seeks out and follows through with new ideas or approaches to a problem. The risk of failure is a real possibility but does not constrain the learner.	- The learner is willing to consider and follow through on ideas or approaches to a problem. The risk of failure is a possibility and puts some constraint on the learner.	- The learner considers new ideas or approaches to a problem only with strong encouragement. The risk of failure constrains the learner.	- The learner will not consider new ideas. The learner strictly stays within the constraints of the problem, which ensures that there is little risk of failure.
Communication			
- The learner identifies the main idea of the problem with numerous supporting details and examples, which are organized logically and coherently within the Problem Solving Framework with no assistance.	- The learner identifies the main idea of the problem with some supporting details and examples in an organized manner within the Problem Solving Framework with little assistance.	- The learner identifies the main idea of the problem with few details or examples in a somewhat organized manner within the Problem Solving Framework with assistance.	- The learner is unable to identify the key elements of the problem without a great deal of assistance.

Transmutant Flobots

Critical Thinking/ Creative Thinking Rubric

4: Exceeds		
Process:		

Transmutant Flobots

Collaboration Rubric

Transmutant Flobots

Collaboration Rubric

Transmutant Flobots

Writing in Math Rubric

Mathematical Correctness:

- Demonstrates complete understanding of the mathematical concept.
- Demonstrates adequate understanding of the mathematical concept.
- Demonstrates partial understanding • Demonstrates unsatisfactory of the mathematical concept. understanding of the mathematical concept.

Language and Vocabulary:

- Skillful and accurate math vocabulary • Adequate and appropriate use of is utilized within the writing
math vocabulary is utilized within the writing.
- Vague and weak use of math vocabulary is utilized within the writing.

Ineffective or incorrect use of math vocabulary is utilized within the writing

Organization and Fluency:

- Writing is easy to follow after initial reading and all the following are incorporated:
- Clarify topic in introduction
- Proper transitions are utilized
- Elaborate paragraphs with
supporting details
- Appropriate word choice
- Strong concluding sentence
- Writing is generally easy to follow after one reading and most of the following are incorporated:
- Clarify topic in introduction
- Proper transitions are utilized
- Elaborate paragraphs with supporting details
- Appropriate word choice
- Strong concluding sentence
- Writing is difficult to understand after • Writing is very difficult to read and one reading and limited use of the following are incorporated:
- Clarify topic in introduction
- Proper transitions are utilized
- Elaborate paragraphs with supporting details
- Appropriate word choice
- Strong concluding sentence
understand and none of the following are incorporated.
- Clarify topic in introduction
- Proper transitions are utilized
- Elaborate paragraphs with
supporting details
- Appropriate word choice
- Strong concluding sentence

Explanation

- Writing clearly translates computational strategies into written language with very limited use of numerals with no errors.
- Writing translates computational strategies into written language with some use of numerals with few errors.

Writing translates some computational strategies into written language with the use of numerals and few errors.

Writing translates some computational strategies into written language with the use of numerals and few errors.

[^0]: - Shows complete understanding of the embedded skill and applies the skill beyond the parameters of the task.

[^1]: - Shows complete understanding of required mathematical knowledge for the specific skill.
 - Shows some understanding of the required mathematical knowledge for the specific skill.

